
Wearable computers consisting of various small devices
such as smart phones, digital cameras, MP3 players and
specialized I/O devices in personal area networks will play
an important role in future ubiquitous computing. In this
environment, accessing user data is quite complex due to
the dynamic and heterogeneous characteristics of the
underlying networks. Moreover, since the amount of user
data increases rapidly, automatic data backup
management is also critical. To overcome these challenges,
several studies have been conducted including our
previously proposed file service system, PosCFS, which
could be adapted to the requirements with a virtualization
technique allowing per-user global namespace for
managing and accessing data stored on physical storage
spaces detected in PAN. In this paper, we present a smart
file service framework, PosCFS+ which is an improved
and extended version of our previous work. Performance
improvement is made possible by redesigning the
metadata management scheme based on database and
keywords rather than ontology. In addition, the automatic
data replication management is newly designed based on
the OSD protocol.

Keywords: Ubiquitous computing, file service, semantic
metadata, data replication, UPnP, WebDAV, OSD.

Manuscript received Oct. 01, 2006; revised Mar. 22, 2007.
This research was supported by the MIC (Ministry of Information and Communication),

Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Assessment), grant number IITA-
2006-C1090-0603-0045. This research was also supported in part by the wearable personal
station project from the MIC and the BK21 program of the Ministry of Education of Korea.

Woojoong Lee (phone: + 82 54 279 5668, email: wjlee@postech.ac.kr), Shine Kim (email:
postshin@postech.ac.kr), and Chanik Park (email: cipark@postech.ac.kr) are with the
Department of Computer Science and Engineering, POSTECH, Pohang, Korea.

I. Introduction

Nowadays, users may carry several personal devices, such as
PDAs, notebooks, MP3 players, digital cameras, and smart
phones, which are each equipped with storage space well
above 2 GB. With the recent advance of flash memory and
small form factor hard disk technologies, each personal device
will be expected to carry up to 1 TB in 2010 [1].

Wearable computers are gaining importance in embedded
ubiquitous computing, where all the personal devices are
connected by personal area networks (PANs). In order for a
user to manage and access all the data stored on personal
devices, the underlying file service layer has to deal with the
dynamic routing in the underlying PAN and build up a new
directory hierarchy for all the gathered data. Moreover, since
wireless networks such as Bluetooth, Zigbee, UWB, and
802.11 are used for PANs, the supporting dynamic
configuration of wearable computers is also important.

In our previous work regarding PosCFS [2], [3], we addressed
the main functionalities required for file services in ubiquitous
computing and presented a new smart file service which could
be adapted to the requirements with a virtualization technique
which provides per-user global namespace for managing and
accessing data stored on physical storage spaces detected in PAN.
As a by-product of virtualization, we could make the system
include a basic context-awareness concept in the file service.
That is, it could provide a special ability, retrieving files which
correspond to the current context for context-aware applications.
The file service was implemented using the UPnP protocol [4] to
automatically build up a virtualized space over all personal
devices in a PAN and also by using WebDAV [5] for file I/O.

Storage virtualization in PosCFS was represented by two
interfaces. One was a WebDAV-based storage interface and the

PosCFS+: A Self-Managed File Service in
Personal Area Network

 Woojoong Lee, Shine Kim, and Chanik Park

ETRI Journal, Volume 29, Number 3, June 2007 Woojoong Lee et al. 281

other was the virtual directory, which is the key concept for per-
user global namespace and supporting context-awareness. It is
dynamically generated by matching file metadata maintained by
the file service with some conditions, such as the user’s profile
and context information. For more details, please refer to [1], [2]
and section III. However, in our previous implementation, the
user’s profile and file metadata are organized to the ontology
language [6], [7], but this turns out to be inefficient on small
embedded devices. Moreover, the system needs to be extended
to support automatic data backup management.

To overcome these challenges, we present a new file service
framework, PosCFS+, which is an improved and extended
version of our previous work in terms of self-manageability.
Using database management like SQLite [8] instead of ontology
technology, we redesigned the metadata management scheme to
improve performance. In addition, automatic data backup
management is newly designed with a simple replica placement
algorithm based on the object-based storage device (OSD)
protocol [9]. Therefore, we have two separate software layers in
PosCFS+: the data access layer based on the WebDAV protocol
and the data replication layer based on the OSD protocol. Having
the data replication layer separate from the data access layer
enables PosCFS+ to easily interoperate with other non-PosCFS+
based devices such as a backup server or a home server gateway.

The remainder of this paper is organized as follows. Section
II gives a brief outline of related works. In section III, we
present details of the PosCFS+ architecture for both the data
access layer for better performance and the data replication
framework based on OSD protocol. Experimental evaluations
are given in section IV. Finally, section V presents our
conclusions and future works.

II. Related Works

In this section, we describe the state of the art of smart file
services which provide an intelligent and integrated framework
for file management in PANs.

The GAIA context-aware file system [10], proposed by the
System Software Research Group of the University of Illinois,
was the first approach which tried to adapt a context-aware
concept to a file system in Active Space, an intelligent PAN. It
provides a novel concept as a well-defined middleware
component and is applicable to diverse computing
environments. However, it is not suitable for the wearable
computing environment due to its centralized file system
construction mechanism; there must be one mount server for
constructing a shared space between devices, and there is a lack
of representations for describing file metadata.

OmniStore [11], proposed by the University of Thessaly, not
only tries to integrate portable and backend storage in a PAN,

but also exhibits self-organizing behavior through spontaneous
device collaboration. Moreover, the system provides
transparent remote file access, automated file metadata
annotation, and a simple data replication framework. Despite
the innovative features, the system is limited in terms of
interoperability because it is implemented with its own defined
discovery and file I/O protocols rather than standard protocols.

EnsemBlue [12], proposed by the University of Michigan,
provides a global namespace shared by all devices in a PAN,
which is maintained by a centralized file server. It also utilizes
energy efficiency and file I/O performance. These features,
inherited from BlueFS [13], were also developed by the same
authors. However, it only provides a static global shared space,
a global file tree, among devices which belong to users of the
same group, such as a family or an organization.

We briefly summarize the characteristics of the PosCFS+
and these systems in Table 1 with some criteria, such as file
service construction mechanisms, file metadata management
schemes for intelligent file browsing or accessing, namespace
management for shared space, automatic data replication or
backup, and so on.

Regarding data replication frameworks in mobile ad-hoc
networks or PANs, several studies have been conducted [14], [15],
[16]. There are various issues related to replica relocation,
consistency management, location management, and so on. Oasis
[17], developed by Intel Research, provides an asymmetric peer-
to-peer data replication framework tailored to the following
requirements: availability, manageability, and programmability in
a PAN. Oasis addresses these requirements by employing a peer-
to-peer network of weighted replicas and performing background
self-tuning. OmniStore [11] also provides a simple replication
framework for PANs as we mentioned. It was implemented
based on a simple backup policy with a base station.

In our work, we present a concept called per-user global
name space which is supported by virtual directories. It
provides a semantic namespace inspired by previous studies. In
order to support semantic namespace in a file service, files can
be indexed by their semantic metadata and accessed by the
information. SFS [18], LISFS [19], CONNECTIONS [20],
and LiFS [21] address the issues of how to generate semantic
information and how to index and access files with the
information.

III. PosCFS+ Architecture

In this section, we present the overall architecture of
PosCFS+, which is shown in Fig. 1. PosCFS+ has two separate
management layers: the data access layer and the data
replication layer. By having two separate layers, greater
extensibility and interoperability in data management, namely,

282 Woojoong Lee et al. ETRI Journal, Volume 29, Number 3, June 2007

Table 1. Characteristic of GAIA, OmniStore, EnsemBlue and PosCFS+.

 GAIA OmniStore EnsemBlue PosCFS+
File system construction
method Centralized mount server Distributed, P2P Centralized server Distributed, P2P

File metadata management Keyword based Keyword based Not support Keyword based
Automated metadata
annotation Restricted Support Not support

Restricted (extracting from
file itself)

Namespace management
for shared space

Static and global namespace
in PAN (directory-based) Flat model

Static and global namespace
(directory based)

Per-user global namespace-
based user profile in PAN

Context-awareness support
Can provide files
corresponding to context
information

Flat model,
Can provide files corresponding
to context information

Not support
Virtual directory
corresponding to context
information

Replication framework Not support Backup policy with base station Not support
Adaptive,
Considering device and
target availability of data

Energy efficiency and
performance Not considered Not considered Considered Not considered

PAN applications

UPnP stack

Virtual file service manager cache and
profile management

PosCFS+ API

WebDAV I/O
manager

Fig. 1. Two-layered architecture of PosCFS+.

PosCFS + client component PosCFS + service component

HTTP

PosCFS + data access layer (P2P storage)

PosCFS + Data management layer on OSD

OSD

OSD controller

Replication manager

OSD

OSD controller

Replication manager

OSD/ iSCSI

PosCFS + replication component

PosCFS + service
component

PosCFS+ replication
component

PosCFS+node

UPnP stack

Distributed file service
manager

Metadata
manager

WebDAV
service

File I/O monitor

PosCFS + replication component

automated backup and replication, are achieved.

The data access layer is constructed using a peer-to-peer
structure with UPnP and WebDAV protocols. The role of this
layer is to provide easy access to user data based on semantic
metadata of files in the PAN. Easy access to user data is
supported by storage virtualization, which includes the
concepts of semantic file addressing and the virtual directory.

The data replication layer is based on the object-based
storage device (OSD) protocol and is in charge of automated

data backup and replication considering the availability
parameter of each device and the target availability pre-
assigned to replication units by users. More details of this layer
are discussed in the following subsection.

1. Data Access Layer in PosCFS+

A. Semantic File Addressing

Most of the existing file systems have a namespace, such as

ETRI Journal, Volume 29, Number 3, June 2007 Woojoong Lee et al. 283

a directory structure which represents file addresses based on
their own internal logic. However, the structure is rigid and
implicitly assigned by users. Moreover, since the amount of
user data increases rapidly, users have difficulty managing and
accessing their files.

Some studies [18], [19], [21] have been conducted to
overcome these challenges. They define not only the
traditional directory structure but also another namespace for
accessing files using semantic information or the metadata on
a local file system. However, they are limited in that they
cannot be expanded to PANs. Thus, there is a need for a new
namespace management technique with a virtualization
technique which can be applied to the dynamic and
heterogeneous network.

Fig. 2. Concept of semantic file address.

Semantic file address :
“Presentation file which was presented by wjlee (speaker) on the
project meeting held on Monday at the conference room”

File address in network file system:
http://sslab.postech.ac.kr/dav/wjlee/PosCFS.ppt

File address in conventional file system:
/home/wjlee/…/PosCFS.ppt

Physical address in disk:
sector & block number

B. Conceptual View of Virtual Storage Space in PosCFS+ and
WebDAV-Protocol-Based File I/O

PosCFS+ nodes use UPnP [4] to discover and control one
another in a peer-to-peer manner. The WebDAV [5] protocol is
used for file I/O in the system. This protocol is an extended
version of HTTP, which defines some extended methods for
supporting file I/O on a traditional network file system, such as
file writing, directory and file property management and
locking, as well as the basic methods defined as HTTP, GET,
and POST, which are methods for file reading. By using these
global standards, we have been able to implement a platform-
independent and self-constructible file service.

In PosCFS+, there are two concepts of storage space: a
physical view, based on store and storage concepts; and a
logical view based on the virtual directory. (See Figs. 3 and 4.)

The store interface, an instance of virtualization in PAN, is
dynamically and automatically constructed and managed by
the UPnP protocol. The storage interface in the store provides
an abstraction of WebDAV-based storage.

The virtual directory is a basic unit of semantic file
addressing in our system. As shown in Fig. 4, the virtual
directory is dynamically constructed by matching file metadata
maintained by the file service with some conditions, such as

user query, profile, and context information. The details of the
construction mechanism are described in the next section.

C. Metadata Management and Querying in PosCFS+

Instead of using the ontology technique to describe a
semantic file address, we use a simple keyword-based query
and an SQLite [8] based metadata repository in PosCFS+ to
enhance the query performance and alleviate metadata
management overhead. We will describe in detail a new design
for semantic file addressing in the following section.

1) Metadata repository
The roles of the metadata repository managed by the

metadata management module in the PosCFS+ service
component are to store and manage the semantic metadata of
files. For that purpose, the repository stores two kinds of
databases whose schema are shown in Fig. 5. One is for file
metadata and the other is for user profiles.

The metadata database is managed by a background process
called the file I/O monitor (see Fig. 1). The file I/O monitor
process carries out the monitoring and logging of file I/Os and
then updates the metadata database with extracted information
from the file tags and the underlying file system. Most file

Fig. 3. Store and storage spaces.

Application

Store

Storage Storage ...
PAN

Fig. 4. Virtual directory.

Context-aware
application

Profile
manager

Context serviceCurrent context
 (OWL)

GetCurrentContext()

Store

Storage Storage

Virtual directory

...

User input
Query=[/keyword=value/]*

284 Woojoong Lee et al. ETRI Journal, Volume 29, Number 3, June 2007

Fig. 5. DBs and tables in metadata repository. URI (universal
resource identifier) represents a file reference used in
WebDAV protocol.

File Table

Attribute Table

Metadata DB

Profile DB
Context Table

User Table

Group Owner PermissionSize Type URI

Value URI Attribute ID

Date URILocationContextName ID

ContextName User ID

formats have their own metadata fields. For instance, in the
case of the MP3 format, the file I/O monitor extracts some
semantic information, such as “Artist” and “Genre” from the
ID3 tag of the format. The pdf or ps format has some tags for
“Author,” “Title,” “Subject,” and so on. For extensibility, an
attribute table has been designed, whose internal
representation is similar to the RDF triple structure [6],
resulting in no limitation of the number of attribute-value
pairs attached to a file resource.

The Profile database stores the user profile which consists of
two types: named context and unnamed context. The named
context represents explicit details of the user’s schedule or events.
For instance, “Project Meeting,” “Room 423 in PIRL building,”
and “2007-02-01” can be used as field values representing a
named context in the context table. On the other hand, the
unnamed context represents a situation defined by a location and
a point of time. This information may be useful for maintaining
the user’s preference of files in a given situation. For example,
we can maintain information such as which music files have
been played at home by a user.

2) Virtual directory construction
Virtual directories are dynamically created at each service

node, and then merged into a file tree at a client node
requesting with a query that is generated from a user input
profile or current context information. How to create a virtual
directory can be specified using relational algebra. A virtual
directory, its sub-virtual directory, and files included in the
directory can be obtained as shown in the algebra, represented
by V and Fv, respectively. This process tries to match a
keyword either explicitly given by the user or by a special type
of user profile (view preference) to build a per-user global
namespace in the PAN and file metadata which is maintained
by the file and attribute tables. Due to the RDF-like structure of

the attribute table, we can obtain the results, V and Fv, from join
operations with tables that are obtained by selection with each
keyword; Vctx and FVctx can be simply obtained by selection of
each keyword using the context table.

The namespace, in other words, is a virtual directory tree
constructed using view preference. For example, if a user
wants to browse files on his/her handheld devices using a view
preference, (for example, a categorization sequence
represented by “Genre-Artist-Album”) then it is dynamically
organized accordingly.

In our file service, view preference is maintained by the virtual
file service manager module in the PosCFS+ client component
(see Fig. 1). It contains categorization rules for each file type,
such as documents, presentations, and types of images.

)),((:

)),((:

)),())(...)(

)(((:

)),(

))(...)()(((:

)1(...)1()0(

)1(...)1()0(

)1(

)0(..

)1()0(.

C

C

FAA

A

F

AAA

nCCCuriVctx

nCCCkctx

FurinAuri

AurivaluevalueAkattrAuriV

Furi

nAuriAurikattrAvalue

condcondcond

condcondcondctx

condcond

cond

cond

condcond

−

−

−

==

−=

∧∧

∧∧

∧

=

=

=

=

σπ

σπ

σσ

σσπ

σ

σσσπ

F

V

F

V

<><>

<>

<>

<><>

where n : size of list,
F: File table,
A: Attribute table,
C: Context table,
Fcond : List of field name and value pairs in F,
Acond : List of attribute-value pairs in A,
Ccond : List of field name and value pairs in C,
k : Keyword for virtual directory,
k ctx: Context keyword for virtual directory,
V: a set of virtual directories,
V ctx: a set of virtual directories corresponding to a context query,
FV: a set of files in V,
FVctx: a set of files in Vctx.

2. Data Management Layer in PosCFS+

A. Overall Architecture of Data Replication Layer

In our system, the data management layer is implemented
using the OSD protocol for data management and replication
and the UPnP protocol to discover each replication
component. This layer is a perfectly separated module with
an upper layer, the data access layer. It is designed for a
private PAN (P-PAN), which is a private network between
devices belonging to a user or a group of users. The separate
design of the data access and replication layers enables the
extensibility and interoperability of PosCFS+ with other non-

ETRI Journal, Volume 29, Number 3, June 2007 Woojoong Lee et al. 285

PosCFS+ based devices such as a backup server or a home
server system in a PAN. However, for cooperation with the
upper layer, we apply a “home node” concept for each
replication unit in our system; a home node contains original
data and replication policies. In our implementation, every
file write request from the upper layer can be delivered to the
home node only, and if the home node fails, then a new home
node will be elected from its replicas of the replication unit
while the read requests for data can be performed with any
replicated data. We will present an in-depth description of this
mechanism later.

Since PosCFS+ uses the OSD protocol for data replication
and replica management, it is possible to take advantage of the
main features of an OSD-based device. An OSD-based device
has the following advantageous characteristics [22]:

- Objects contain both data and meta-data.
- It allows fine-grained object-level security.
- It allows non-mediated access to networked storage devices.
- It is possible to support efficient storage management,

namely, controller QoS guarantees, object placement, and
so on.

This data replication layer consists of three components: an
OSD controller, an OSD target, and a replication manager.
Figure 6 shows the internal structure of the data replication layer.

The OSD controller enables a personal device to behave as an
OSD initiator which can communicate with other OSD target
devices. Each OSD target device detected in a PAN is
recognized as a general SCSI device to the upper level data
access layer.

Since a personal device cannot always be connected to the
network due to its resource-restricted environment, the data
replication manager must create and manage the replica nodes
with replication metadata. We consider the lightweight and

Fig. 6. Data replication layer.

OSD target

OSD Controller

Replication manager

OSD/ISCSI Session manager

I/O monitor

Replica controller

Replica metadata
manager

OSD commander

I/O request from data access layer

I/O request

Replica management

OSD target

OSD controller

Replication manager

decentralized protocol for low overhead in the resource-
restricted environment of a personal device. The main
functions of a replication manager include: replica creation,
replication placement, replica access, and management of
replica metadata.

The I/O monitor investigates every read/write operation and
maintains the read/write ratio of each object. In our data
replication layer, creating or deleting replicas is triggered by
using the read/write ratio or the pre-defined target availability
of each replication unit. The replica manager maintains replica
related metadata and creates and deletes replicas.

B. Replication Unit

The data replication layer assumes the replication unit which
is a basic unit for replication. Each replication unit is an object
in the object-based storage device (OSD), which is a container
for real file objects, depending on the system configuration.
Figure 7 shows how a replication unit is structured in our
framework. The replication unit includes two fields: the object
data field and the object attribute field. The object data field
actually stores the object pointers to actual data objects to be
replicated. The object attribute field contains the replica
metadata on how objects are replicated. The replica metadata
includes reference availability, the original owner device ID of
the data, the replica node IDs, and so on.

The home_node information represents the device in charge
of replica creation and deletion as well as replica metadata
management, whereas the replica_placements information
describes the replicas of the replication unit and the failure
probability of each replica. The version information for replicas
themselves and replica metadata is also maintained for
consistency.

Figure 9 illustrates how the operation of replica metadata
management works. Assume that node A has the home_node
(HN) of the replication unit (RU), and the replica can be found
in node B. Then, the replica manager of node A tries to create a
new replica in node E via the OSD protocol when it detects that
the current estimated availability (0.6) of the RU is lower than

Fig. 7. Replication Unit.

File metadata (inode)

Replica metadata

Replication unit object in OSD

Object pointer

Object pointer

Object pointer

Object data Object attribute

File
object . . .

.

.

.
File

object
File

object

286 Woojoong Lee et al. ETRI Journal, Volume 29, Number 3, June 2007

Fig. 8. Replication metadata.

struct replica_metadata {
/* Home node */
struct osd_node home_node
/* Replica information */
struct osd_node_list replica_placements
/* Version of Replica Metadata */
unsigned int ru_md_version
/* Version of Replication unit */
unsigned int ru_version
/* Pointer to data object list in Replication Unit */
struct object_list objects
/* Current availability of Replication Unit */
unsigned int current_availability
/* Target availability of Replication Unit */
unsigned int target_availability

}

Replica Metadata structure for a Replication Unit

Fig. 9. Replica metadata update example.

P-PAN

A

B

C

D

E

A home node of a
replication unit

A replica node that is
previously selected

A new replica node

OSD Node

OSD Node

B

A

E

A

B

Replica metadata
Home node : A
Replica placement : B
Current availability : 0.6
Target availability : 0.9
Replica MD version : 1

Same as node A

Replica metadata

Home node : A
Replica placement : B,E
Current availability : 0.93
Target availability : 0.9
Replica MD version : 2

Same as node A

Same as node A

the required reference availability (0.9), the target availability,
specified in its replica metadata. After successfully creating a
data replica in node E, the replica manager of node A re-
estimates the current availability (0.93) of the RU. If the current
availability is greater than or equal to the target availability, it
sends the updated replica metadata of previously and newly
created replicas of the RU to nodes B and E.

C. Replica Management Policy

At first, the data replication layer tries to discover all the
accessible OSD devices. Figure 10 describes in detail the main
steps of OSD device discovery via UPnP. First, a new OSD
node managed by the PosCFS+ replication manager is
discovered. Next, the replication management service on the
home node shown at the left side of the figure writes the
information of the newly discovered node to the proc file
system in Linux, including the IP address, the failure
probability of the node, and the node status. Then the
replication manager obtains the information from the proc file

Fig. 10. Replica discovery steps.

Replication
manager in kernel

Replication mgmt service in
user-space

Proc FS in
Linux

OSD

OSD controller

Replication
manager in kernel

Replication mgmt service in
user space

Proc FS in
Linux

OSD

OSD controller

(1) UPnP/SSDP

(4) (6)
(5) OSD/ISCSI

(2)

(3)

system and updates the OSD node list which is maintained for
a future replica selection. If a new replica of the RU is required,
then the replication manager notifies the OSD controller to
create a new replica node. The OSD controllers negotiate with
each other in order to create an OSD/iSCSI session. Finally, the
OSD controller reports the operation result to the replication
manager.

The data replication layer has to deal with the following
issues for replica placement.

- Data availability estimation for an RU and replica
management

- Consistency management
- Home node election

1) Data availability estimation and replica management
The home node of an RU takes charge of creating and

deleting replicas and updating the replica metadata. The
replication manager in the home node continually estimates the
failure probabilities of all the replicas under its supervision.
When it finds that an RU does not satisfy the availability
requirement as we mentioned before, that is, the currently
estimated availability of the RU is less than the desired
reference availability (the target availability specified in the
replica metadata of an RU), the replication manager of the
home node selects a candidate node for a new replica from the
OSD node list. Estimating the current availability of an RU is
based on the following formula:

Current availability of an RU = ∏
=

−
n

i
ip

1
1

where
n : the number of replicas,
pi : the failure probability of node i.

We assume that the failure probability of all the OSD devices
is known in advance. The replication manager of the home
node selects the device with the highest availability among the
OSD devices as a new replica.

2) Consistency management
We use a simple read-one/write-all (ROWA) method [23] for

consistency management among replicas. In our replication

ETRI Journal, Volume 29, Number 3, June 2007 Woojoong Lee et al. 287

framework, read requests for data objects are allowed from any
replica, while write requests for data objects should be
propagated from home nodes to all of its replicas currently
available after the write requests from the upper layer. As
previously mentioned, writes can be permitted only to objects
maintained by home nodes.

Figure 11 illustrates how the ROWA method works and how
the replica metadata is updated. Assume that node A is the
home node of a data object whose replicas are found in nodes
B, D, and E. When a client sends a read request to node B,
node B first retrieves the replica version information by
sending a request message to home node A. Then, node B can
carry out the read operation requested by the client as long as it
finds that the received replica version is identical to the replica
version found in its local replica metadata. Otherwise, the read

Fig. 11. Replica consistency management.

A

B

C

Home node of an RU

Replicas for an RU

A client can read from any
replicas (A,B,D and E)

E

D

A client can write only to the
home node (A)

Write request

Read request

Metadata version check

After write

Replica version: 1
Replica metadata

A, B, D, E
OSD node

Replica version: 2 A, B, D, E
Replica metadata OSD node

Fig. 12. Example of home node election process.

Home node of an RU

Replicas for an RU

OSD node

Newly elected home node

New Replica node

A

B

C

E

D

Failure of
home node A

RV: version of replication unit
RMV: version of replica metadata

A

B

C

E

D

X X

X X
P-PAN

P-PAN

RV: 2, RMV: 2
RV: 2, RMV: 3

RV: 2, RMV: 3

RV: 1, RMV: 2

B
A

D
E

After home node election process

Replica metadata

RV: 2, RMV: 3 D, B, C, E
Replica metadata OSD node

request will be forwarded to the home node.
Regarding the write operation, the home node increases the

replica version by one before processing a write request
received from a client. After fulfilling the write request, the
home node sends the updated replica metadata information to
nodes B, D, and E, where the corresponding replica metadata is
stored.

3) Home node election
It is important to note that the operation of creating and

deleting replicas can be performed only by the home node.
Since all the nodes are weakly connected by wireless
connection in a PAN, we face the situation where the HN is no
longer accessible in the current configuration of a PAN. In
order to ensure the correct replica operation even when the
original home node is not available, the replication manager
elects a new home node.

To detect the failure of a home node, every replica node has
to check the status of its home node periodically. When the
break-down of the original home node is detected on a replica
node, they negotiate with each other for election. If a
replication manager on the firstly noticed node recognizes that
it has the most recently updated RU, then it becomes the new
home node itself and then propagates the event for the new
node election. If not, it relinquishes its right as a candidate. In
that case, the secondly noticed node performs the same process.
This process is repeatedly propagated to all the replica nodes in
consecutive order.

D. Automatic Backup in PAN

Usually, there are highly stable nodes in a PAN. A home
server or a desktop are typical examples for this. In such an
environment, all personal data on various devices in the PAN
can be automatically backed up to the most reliable node, such
as a home server or a desktop.

IV. Experimental Evaluation

In order to evaluate PosCFS+, we conducted several
experiments, particularly on the device discovery time
including the initialization time of the data access layer and the
query response time for actual data retrieval. For that purpose, a
prototype of PosCFS+ was developed in Linux 2.6.12 with
Intel UPnP SDK v1.4, Intel OSD/ISCSI reference
implementation v2.0.16, SQLite v3.2.7, libneon 0.25.3, and
libextrator 0.5.14. The prototype implementation also includes
a VFS support module in Linux. We implemented the module
using the file system in user-space (FUSE) functionality
provided by the Linux kernel and libfuse 2.6.0.

288 Woojoong Lee et al. ETRI Journal, Volume 29, Number 3, June 2007

Fig. 13. Device discovery time in PosCFS+.

0

1
2
3
4
5
6
7
8

1 PDA
(Local)

2 PC 3 PC 4 PDA 5
Notebook

6 PC 7 PDA 8 PC 9
 Notebook

10 PDA

No. of devices

Ti
m

e
(s

)

PosCFS
PosCFS+

Fig. 14. Query processing time in PosCFS+.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 PDA
(Local)

2 PC 3 PC 4 PDA 5
Notebook

6 PC 7 PDA 8 PC 9
Notebook

10 PDA

No. of devices

Ti
m

e
(s

)

PosCFS
PosCFS+

The testing platforms we used include four Jaurus-SL5500
PDAs with Strong ARM 266 MHz, 32 MB memory, and
802.11b wireless networks; three PCs with 0.8 GHz to 2.8
GHz Pentium, 512 to 1000 MB RAM, and 100 MB wired
Ethernet; and two laptop computers with 1.8 GHz P4, 512 MB
RAM, and 802.11g wireless Ethernet.

Figure 13 shows the results for device discovery time. Note
that the device discovery time is not dependent on the number
of devices; it gradually converges to 7 seconds. This is because
the UPnP discovery process depends on the search time of the
simple service Discovery Protocol (SSDP) [4].

The response time to a request for virtual directories by a
client is referred to as query processing time which is one of
important criteria for scalability. Figure 14 shows how query
processing time varies as the number of devices increases. In
this evaluation, 1000 files are uniformly distributed to all nodes.
The results demonstrate that the query processing time is
greatly reduced in PosCFS+. This enhancement is made
possible by the complete redesign of the file metadata
representation framework from an ontology-based scheme to
one based on the database and keyword table, thus eliminating
the parsing overhead for ontology-based documents. Moreover,
we have redesigned the metadata management scheme to
separate the user profile from the file metadata and optimized
the query processing code. Moreover, query processing time is

Fig. 15. Simulation results in case of 10 devices: (a) availability
and (b) number of replicas.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50

Current availability
Target availability

Time (min)

C
ur

re
nt

 a
va

ila
bi

lit
y

(a)

60

0

1

2

3

4

5

6

1 41 81 121 161 201
Time (min)

N
o.

 o
f r

ep
lic

a

201

(b)

less sensitive to the number of devices in a PAN with our new
design.

To evaluate our newly designed data replication layer under
various circumstances, we conducted several experiments by
simulation. We assumed that the underlying wireless network
is 54 Mbps 802.11g and the failure probabilities of the various
devices are uniformly distributed between 0.4 and 0.5. The
probability of the home node was fixed to 0.3 which is a little
bit less than those of the other devices.

Initially, a data object of 100 MB was stored in its home
node and the reference data availability was set to 0.3. For
simplicity, no write operations were assumed during the
simulation process. Simulations were conducted under system
configurations with 5, 10, and 20 devices. The results are
shown in Figs. 15 and 16. We changed the target availability of
the replication unit dynamically to show how our data
replication layer would react to the current system
configuration. Initially, the reference availability was set to 0.95.
It was changed to 0.4 at 15 minutes, set to 0.75 at 30 minutes,
and finally changed to 0.5 at 45 minutes. Figure 15 shows how
the current availability of the data object was adjusted
dynamically by data replication and how many data replicas
were currently managed in the system of 10 devices. The
results demonstrate that our data replication layer manages the
data replication correctly in the current system configuration.

ETRI Journal, Volume 29, Number 3, June 2007 Woojoong Lee et al. 289

Fig. 16. The failure rates showing how many times the resulting
data replication processing cannot meet the given target
availability when the number of devices is 5, 10, and 20.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fa
ilu

re
 ra

te

5 nodes 10 nodes 20 nodes

TA: 0.95
(0–15 min)

TA: 0.4
(15–30 min)

TA: 0.75
(30–45 min)

TA: 0.5
(45–60 min)

When the number of devices in the system is small, the effect
on data availability of losing a single device may be much
more significant than when there are many devices. Therefore,
our data replication layer may not find an appropriate solution
that can satisfy the target availability of the data object due to
the small number of devices operating. This may trigger more
frequent execution of the data replication layer. Figure 16
shows the failure rates, namely, the number of times the
resulting data replication process cannot meet the given target
availability. Figure 16 demonstrates that our data replication
layer produces more reliable results as the number of devices in
a system increases.

V. Conclusion and Future Work

Core functionalities required for file service in ubiquitous
computing were designed and implemented in a system we
previously proposed, PosCFS. The key feature of the file
service is a virtualization technique which allows per-user
namespace for managing and accessing data stored on physical
storage spaces detected in PAN via UPnP protocol.

In this paper, we proposed a new smart file service
framework, PosCFS+, which is an improved and extended
version of PosCFS in terms of self-manageability. Performance
has been improved by redesigning the metadata management
scheme using database and keyword based query rather than
ontology. In addition, the data replication layer is newly
designed separately from the existing data access layer for
automatic data management based on the OSD protocol. The
separate design of the data access and replication layers enables
extension and interoperation with other non-PosCFS-based
devices such as a backup server or a home server system.

We need to conduct more extensive evaluation with realistic
workloads on the data access layer and data replication layer.
Moreover, supporting context-awareness in file systems should
be considered in more details. In this paper, we presented a

virtual directory concept and per-user global namespace using
user profile and file metadata management techniques.
However, there are some remaining unresolved issues related
to the management framework. We believe that the framework
should be improved with automated metadata tagging using
external sensing information and file relation extracted from
I/O monitoring. Moreover, in-depth research into context-
awareness is needed to enable context-aware applications to
easily access relevant data corresponding to the current context
managed by a context server in a PAN.

Privacy and security should be also considered as well as
data searching in PAN. Currently, we are considering a data
searching framework utilizing existing desktop search engines,
such as Google Desktop Search [24] or Beagle [25] with our
file service.

References

[1] Jim Gray, “Storage Bricks Have Arrived,” Keynote presentation at
the USENIX Annual Conference on File and Storage Technologies
(FAST), 2002.

[2] W. Lee, S. Kim, J. Shin, and C. Park, “PosCFS: An Advanced File
Management Technique for the Wearable Computing
Environment,” LNCS 4096 - Proc. EUC’06, IFIP, 2006, pp. 965-
975.

[3] J. Shin, W. Lee, S. Kim, and C. Park, “PosCFS: A Context-Aware
File Service for the Wearable Computing Environment,” Proc. Next
Generation PC Int’l Conf., 2005.

[4] UPnP Forum, “UPnP: Universal Plug-and-Play,” http://www.
upnp.org

[5] IETF, “WebDAV: Web-Based Distributed Authoring and
Versioning,” RFC 2518.

[6] W3C, “RDF: Resource Description Framework,” http://www.
w3c.org/RDF

[7] W3C, “OWL Web Ontology Language,” http://www.w3.org
/TR/owl-features

[8] SQLite, http://www.swlite.org
[9] T10, “SCSI Object-Based Storage Device Commands (OSD),”

http://www.t10.org/ftp/t10/drafts/osd
[10] C.K. Hess and R.H. Campbell, “A Context-Aware Data

Management System for Ubiquitous Computing Applications,”
Proc. Int’l Conf. Distributed Computing Systems, 2003.

[11] A. Karypidis and S. Lalis, “OmniStore : A System for Ubiquitous
Personal Storage Management,” Proc. Fourth Annual IEEE Int’l
Conf. Pervasive Computing and Communications (PERCOM’06),
2006.

[12] D. Peek and J. Flinn, “EnsemBlue: Integrating Distributed Storage
and Consumer Electronics,” 7th Symp. Operating Systems Design
and Implementation (OSDI), 2006.

[13] E.B. Nightingale and J. Flinn, “Energy-Efficiency and Storage

290 Woojoong Lee et al. ETRI Journal, Volume 29, Number 3, June 2007

Flexibility in the Blue File System,” 6th Symp. Operating Systems
Design and Implementation (OSDI), 2004.

[14] T. Hara, “Data Replication Issues in Mobile Ad Hoc Networks,” 6th
Int’l Workshop on Database and Expert Systems Applications,
2005.

[15] T. Hara and S. Madria: “Consistency Management among Replicas
in Peer-to-Peer Mobile Ad Hoc Networks,” Proc. of Int’l Symp.
Reliable Distributed Systems, 2005.

[16] T. Hara and S. Madria, “Location Management of Replicas
Considering Data Update in Ad Hoc Networks,” Proc. 20th Int’l
Conf. Advanced Information Networking and Applications, 2006.

[17] M. Rodrig, A. LaMarca, “Oasis: An Architecture for Simplified
Data Management and Disconnected Operation,” Personal and
Ubiquitous Computing Journal, vol . 9, no. 2, 2005.

[18] D.K. Gifford, P. Jouvelot, M.A. Sheldon, J.W. O’Toole, Jr.,
“Semantic File Systems,” 13th ACM Symp. Operating Systems
Principles, 1991.

[19] Y. Padioleau, O.Ridoux, B. Sigonneau, S. Ferre, M. Ducasse, O.
Bedel, and P. Cellier, “LISFS: A Logical Information System as a
File System,” 28th Int’l Conf. Software Engineering, 2006.

[20] C.A. Soules and G.R. Ganger, “Connections: Using Context to
Enhance File Search,” 20th ACM Symp. Operating Systems
Principles, ACM Press, 2005, pp. 119-132.

[21] A. Ames, N. Bobb, S.A. Brandt, A. Hiatt, C. Maltzahn, E.L. Miller,
A. Neeman, and D. Tuteja, “Richer File System Metadata Using
Links and Attributes,” Proc. the 22nd IEEE / 13th NASA Goddard
Conf. Mass Storage Systems and Technologies, Monterey, CA,
April 2005.

[22] IBM, “Object Storage: The Future Building Block for Storage Systems,”
http://dl.alphaworks.ibm.com/technologies/osdsim/osdsim2.pdf

[23] R. Budiarto, S. Noshio, and M. Tsukamoto, “Data Management
Issues in Mobile and Peer-to-Peer Environments,” Data and
Knowledge Engineering, vol. 41, 2002, pp. 183-204.

[24] Google Desktop Search, http://desktop.google.com
[25] Beagle, http://beable-project.org

Woojoong Lee received the BE degree in
chemical engineering and the MS degree in
computer science from Hanyang University,
Korea, in 2002 and 2004, respectively. He is
currently a PhD candidate in the Department of
Computer Science and Engineering,
POSTECH, Korea. His research interests

include pervasive computing, storage systems, and embedded systems.

Shine Kim received the BS degree in earth and
environment sciences from Chonbuk National
University, Korea, in 2004. He also received the
MS degree from the Graduate School for
Information Technology of POSTECH, Korea,
in 2007. After graduation, he joined Samsung
Electronics Co., Ltd. His research interests

include pervasive computing and storage systems.

Chanik Park received the BE degree in 1983
from Seoul National University, Seoul, Korea,
the MS degree in 1985, and the PhD degree in
1988, both from Korea Advanced Institute of
Science and Technology, Korea. Since 1989, he
has been working for POSTECH, where he is
currently a professor in the Department of

Computer Science and Engineering. He was a visiting scholar with
Parallel Systems group in the IBM Thomas J. Watson Research Center
in 1991, and was a visiting professor with Storage Systems group in the
IBM Almaden Research Center in 1999. He has served a number of
international conferences as a program committee member. His
research interests include storage systems, embedded systems, and
pervasive computing.

ETRI Journal, Volume 29, Number 3, June 2007 Woojoong Lee et al. 291

	I. Introduction
	II. Related Works
	III. PosCFS+ Architecture
	IV. Experimental Evaluation
	V. Conclusion and Future Work
	References

